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For two-dimensional and three-dimensional motions we prove the formal stabi- 

lity of the Lagrange solutions of the circular restricted three-body problem with 

a critical ratio of the masses of the primary bodies. 

1, We consider the motion of three material points, mutually attracting one another 
according to Newton’s law. The equations of motion of the problem admit particular 

solutions co~es~nding to a motion under which the three bodies form an equilateral tri- 
angle rotating in its plane about the center of mass of the three-body system. We exa- 

mine the stability of these solutions for the case of the circular restricted problem in 
which the ratio of the masses of the primary bodies is critical. 

Let the units of measurement be chosen so that the angular rate of rotation of the pri- 

mary attracting bodies, the distance between them, the sum of their masses, and the con- 
stant attraction are equal to unity. In these units the mass of the smaller of the attract- 
ing bodies is equal to p. We express the Hamiltonian function of the circular restricted 

three-body problem close to the triangle solution f, I in a series [lj and we write it in 

the form 
(1.1) 

,l ,l 5 
Hz = 2 (p;+ p9) + qz p1- q1p2 -I- 8 59 - h-q1ga - $ qzs -!. 

1/g 

Ua = & (111~1’ + 400krj?(1~ - 738rj1%z- i20 kq@ - I)ij.~~ -I- 

72q12qs2 -+ 960kqlq2qs2 + 792q2’q$ - 144q3*), f _7 3 y’3 c /I (1 - 2w 

where II, is a polynomial of degree no in the coordinates qi and the momenta pi, 
i =__ 1 2 3 . 

We’cohsider first the case of two-dimensional motion. The frequencies o1 and o,(o& 
oz) of an oscillating system with the Hamiltonian fZ, (ql, 92, ~1, &f satisfy the equation 

o* - 02 + Z’ib lL (1 - FL) = u 

To a first approximation we write the stability region in the form of the inequalities 

0 < p < (9 - v/s?) / 18 N 0.0385208... (I.21 



Stability of the Lagrange solutions of the restricted three-body problem 343 

It was shown in [2, 33 that the Lagrange solutions of the two-dimensional circular re- 

stricted three-body problem are stable for all values of P belonging to the region (1.2) 
except for twovalues which give rise to instability. These values of p , namely p1 and 

ps , correspond to resonances of the third and fourth orders 

/Jl = (45 - 1/1833) / 90 N 0.0242938..., o1 = 20, z 2 fs 15 

ps = (15 - v/213) / 30 N 0.0135160..., o1 = 30, = 3 1/g! 10 

As yet unanswered is the question of stability of the solutions for the boundary values lo 

of the region (1.2). When I_L = 0 , the question is easily answered since the problem re- 

duces to investigating the stability of motion of a material point around a fixed center 

of attraction and, for such a motion, there is only orbital stability. A study of the stability 
when lo = p* = (9 - 46% / .iS (the critical ratio of the masses of the primary bodies) 

involves a difficulty, namely, that for this value of lo the frequencies of the linear prob- 

lem are equal and the linear system is unstable. We examine the stability of the Lagrange 

solutions for P = p* in Sect.2. 
The stability of the Lagrange solutions in the three-dimensional case was investigated 

in [l, 4-j. As in the two-dimensional case, when p = i* no conclusions have as yet been 

reached concerning the stability of the Lagrange solutions. We consider this question in Sect. 3. 

2. We investigate now the problem of the stability of the Lagrange solutions of the. 

two-dimensional problem with a critial ratio of the masses of the primary bodies (p =p*). 
The stability of an equilibrium position of an autonomous Hamiltonian system with 

two degrees of freedom was investigated in [5] for the case of equal frequencies (ol = 

os = o) of the linear problem. The cases of prime and nonprime elementary divisors 

of the characteristic matrix were studied. In [5] a real normal form of the linear prob- 

lem was obtained in the case of nonprime elementary divisors, and a constructive way 
for obtaining a normalizing linear canonical transformation N, was indicated. It was 

also shown that using a nonlinear canonical change of variables, the Hamiltonian func- 
tion can be reduced to the form 

H = li, (VI” + Qz") t 0 (Q,P, - Q,P,) + (2.1) 
(PI2 + J’22) IA (P12 + P22) -1- B (Q1P2 - Q,J’d+C (Q12+Q22)I+Hsf . . 

and it was proved that for A > 0 the equilibrium position Q1 = Q2 = P, = P, = 0, 
has formal stability [S], while for A < 0 it is unstable in the Llapunov sense. 

In the problem of the stability of the Lagrange solutions for p = P* the characteristic 

matrix of the linear system has nonprime elementary divisors and its eigenvalues are 

equal to & i v/z / 2. The linear real canonical transformation q = Nq*, where 

q 

Q1 

42 

= , N = 

Pl 

m , 

, f-l*= 

a* 
I 

q2* 

Pl* 

],a* 

reduces the quadratic part of the Hamiltonian function for the two-dimensional circular 
restricted three-body problem to a normal form. Making all subsequent calculations 
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according to formulas given in [S], we can reduce the Hamiltonian function to the form 
(2.1) with A = 0.603... > 0. Consequently, for the critical ratio of the masses of the pri- 

mary bodies the Lagrange solutions of the two-dimensional circular restricted three-body 

problem are formally stable. 

3. We now consider the three-dimensional problem for the critical ratio of the mas- 

ses. Here o1 = oa = vs / 2, os = 1. By means of a linear real canonical transforma- 
tion we reduce the quadratic part H2 of the Hamiltonian function (1.1) to a real normal 
form. In doing this we transform the variables of the two-dimensional motion using the 
matrix N of Sect. 2, and we leave the variables qs and ps unchanged. The Hamiltonian 

function (1.1) then assumes the form 

H = + (q1*2 + q2*y + 
1/2 1 

2 (ql*(‘z* - pz*Pl*) + T ((132 + a31 i (3.1) 

% 
y,y*y~y,y~q1*“~q2*“‘~l*“J~**“‘q3”*, Y = Tl + v2 + vs + v4 + 2’5 

“==3 

where the coefficients, to be used in what follows, are 

h 10~)~ = - + (I/%,, + gnzl), 
v/5 

holooz = - iij- ( JfS n12 + gtz22) 

h 00102 = -g (I/B n13 + 9n&, h 

h 
3 

om=-- 
8 

As was done in [S], we can, by applying Birkhoff’s transformation p], completely annihi- 

late the terms of the third order in the coordinates and momenta in Eq. (3.1); in addi- 

tion, we can simplify the terms of the fourthorder. We reduce the Hamiltonian function 

(3.1) to the form 

H = '12 (41~ + Qa') + l/s 12 (Q1pa - Qapd + 'I2 (Qs2 + Ps2) + 
(p12 + p22) [A (PI'+ p,') + B (Q,p, - QaP1) + C (Q12 + Q22)] + 
(Qs" + p3’) [D (p12 + p2’) + E (Q,P, - Q,p,) + F (Qs2 + P,~)]+H, + . . . 

1 1 
2(2--o) - 2(2+0) + -+] [ hooozhoolo~ - homo2lzcm1a] + 

r 

1 4 (z - 1 w)2 + 4 (2 !+ o)2 + & 1 Pi&,, + %&,,,,I + 4 ~~00004 

Substituting numerical values, we obtain F = 9.660..., while the coefficient A was cal- 
culated in Sect. 2. 

We.now prove the formal stability of the Lagrange solutions in the three-dimensional 
case. We can show, with the aid of an infinite number of steps of Birkhoff’s transforma- 
tion (possibly diverging), that the Hamiltonian function reduces to the form 

Jf/2 
R = + (412 ,f Qz2) + - 2 (QI~‘, - Q&I) i 2 -!- (Q32 ,- [J32) _+ (3.2) 

i a+cr,c, (41~ + 4~~)"' (1 I12 7' PC?)" (Q1P2 - Q2pl)'> (Q32 -i P32)"' 
a=2 

a = a1 + a2 + a3 + a4 
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where the cci are nonnegative integers. 
It can be readily verified that a canonical system with the Hamiltonian (3.2) has three 

formal integrals 
N = const, (QIPa - QaP1) = con&, (Qs2 + P92) = const 

Consequently, the function 

G= H - VT/ 2 (Q,P, - Q,p,) ---I2 (Qsa + Ps2) 

is also a formal integral of the system with the Hamiltonian (3.2). 
In the expansion G = & + G, -j- G6 + . . . the quantity 

Gz + GI = l/e (41~ -t- Qz2) + A (P,” + P22)2 + P (Q22 + P,V + 
(PI' + P,') IB (Q,P, - Q,P,) + C (Qr2 -I- Q22)1 + 
(Qs2 + Pa2)W (PC + P2’) + E (QIP, - Q,P,)l 

is a positive definite function of its variables for A > 0 and F > 0 . Consequently, 
the formal stability of the Lagrange solutions of the three-dimensional circular restricted 
three-body problem with a critical ratio of the masses of the primary bodies follows from 
the above reasoning 16). 

In conclusion the author thanks A. P. Markeev for useful discussion of the results ob- 
tained. 
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